Efficacy of probiotic Streptococcus thermophilus in counteracting TGF-β1-induced fibrotic response in normal human dermal fibroblasts

Author:

Lombardi Francesca,Augello Francesca Rosaria,Artone Serena,Bahiti Blerina,Sheldon Jenna Marie,Giuliani Maurizio,Cifone Maria Grazia,Palumbo Paola,Cinque Benedetta

Abstract

Abstract Background Abnormal and deregulated skin wound healing associated with prolonged inflammation may result in dermal fibrosis. Since the current therapeutic strategies revealed unsatisfactory, the investigation of alternative approaches such as those based on the use of specific probiotic strains could provide promising therapeutic options. In this study, we aimed to evaluate whether the lysate from S. thermophilus could antagonize the fibrogenic effects of TGF-β1 in normal human dermal fibroblasts (NHDF). Methods NHDF were exposed to TGF-β1 to establish a fibrotic phenotype. Proliferation rate and cell number were measured using the IncuCyte® Live Cell Imager system and the trypan blue dye exclusion test. Phenoconversion markers (α-SMA and fibronectin) and collagen I levels were assessed by western blot and immunofluorescence. The mRNA levels of TGF-β1 were evaluated by RT-PCR. The Smad2/3 phosphorylation level as well as β-catenin and PPARγ expression, were assessed by western blot. The cell contractility function and migration of NHDF were studied using collagen gel retraction assay, and scratch wound healing assay, respectively. The effects of S. thermophilus lysate, alone or combined with TGF-β1, were evaluated on all of the above-listed parameters and markers associated with TGF-β1-induced fibrotic phenotype. Results Exposure to the S. thermophilus lysate significantly reduced the key mediators and events involved in the abnormal activation of myofibroblasts by TGF-β1 within the fibrotic profile. The S. thermophilus treatment significantly reduced cell proliferation, migration, and myo-differentiation. In addition, the treatment with probiotic lysate reduced the α-SMA, fibronectin, collagen-I expression levels, and affected the collagen contraction ability of activated dermal fibroblasts. Moreover, the probiotic targeted the TGF-β1 signaling, reducing Smad2/3 activation, TGF-β1 mRNA level, and β-catenin expression through the upregulation of PPARγ. Conclusion This is the first report showing that S. thermophilus lysate had a remarkable anti-fibrotic effect in TGF-β1-activated NHDF by inhibiting Smad signaling. Notably, the probiotic was able to reduce β-catenin and increase PPARγ levels. The findings support our point that S. thermophilus may help prevent or treat hypertrophic scarring and keloids.

Funder

Funding for research by Department of Life, Health & Environmental Sciences, University of L’Aquila

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Clinical Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3