Abstract
AbstractQuercetin is an essential ingredient in functional foods and nutritional supplements, as well as a promising therapeutic reagent. Also, the green technique to produce quercetin via rutin biotransformation is attractive. Genes encoding two thermostable glycosidases from Dictyoglomus thermophilum were cloned and expressed in Escherichia coli, which were applied in rutin biotransformation to produce highly pure quercetin at a high temperature. The production of biocatalysts were scaled up in a 5-L bioreactor, yielding a several-fold increase in total enzyme activity and a quercetin production of 14.22 ± 0.26 g/L from 30 g/L of rutin. Feeding strategies were optimized to boost biomass and enzyme production, achieving an activity of 104,801.80 ± 161.99 U/L for rhamnosidase and 12,637.23 ± 17.94 U/L for glucosidase, and a quercetin yield of 20.24 ± 0.27 g/L from the complete conversion of rutin. This study proposes a promising approach for producing high-quality quercetin in an industrial setting.
Graphical Abstract
Funder
Foundation for Innovative Research Groups of the National Natural Science Foundation of China
Jiangsu Shuangchuang Talent Program for Mass Innovation and Entrepreneurship
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献