One-pot synthesis of (R)- and (S)-phenylglycinol from bio-based l-phenylalanine by an artificial biocatalytic cascade

Author:

Zhang JiandongORCID,Qi Ning,Gao Lili,Li Jing,Zhang Chaofeng,Chang Honghong

Abstract

AbstractChiral phenylglycinol is a very important chemical in the pharmaceutical manufacturing. Current methods for synthesis of chiral phenylglycinol often suffered from unsatisfied selectivity, low product yield and using the non-renewable resourced substrates, then the synthesis of chiral phenylglycinol remain a grand challenge. Design and construction of synthetic microbial consortia is a promising strategy to convert bio-based materials into high value-added chiral compounds. In this study, we reported a six-step artificial cascade biocatalysis system for conversion of bio-based l-phenylalanine into chiral phenylglycinol. This system was designed using a microbial consortium including two engineered recombinant Escherichia coli cell modules, one recombinant E. coli cell module co-expressed six different enzymes (phenylalanine ammonia lyase/ferulic acid decarboxylase/phenylacrylic acid decarboxylase/styrene monooxygenase/epoxide hydrolase/alcohol dehydrogenase) for efficient conversion of l-phenylalanine into 2-hydroxyacetophenone. The second recombinant E. coli cell module expressed an (R)-ω-transaminase or co-expressed the (S)-ω-transaminase, alanine dehydrogenase and glucose dehydrogenase for conversion of 2-hydroxyacetophenone into (S)- or (R)-phenylglycinol, respectively. Combining the two engineered E. coli cell modules, after the optimization of bioconversion conditions (including pH, temperature, glucose concentration, amine donor concentration and cell ratio), l-phenylalanine could be easily converted into (R)-phenylglycinol and (S)-phenylglycinol with up to 99% conversion and > 99% ee. Preparative scale biotransformation was also conducted on 100-mL scale, (S)-phenylglycinol and (R)-phenylglycinol could be obtained in 71.0% and 80.5% yields, > 99% ee, and 5.19 g/L d and 4.42 g/L d productivity, respectively. The salient features of this biocatalytic cascade system are good yields, excellent ee, mild reaction condition and no need for additional cofactor (NADH/NAD+), provide a practical biocatalytic method for sustainable synthesis of (S)-phenylglycinol and (R)-phenylglycinol from bio-based L-phenylalanine.

Funder

national natural science foundation of china

shanxi province science foundation for youths

shanxi provincial key research and development project

Publisher

Springer Science and Business Media LLC

Subject

Renewable Energy, Sustainability and the Environment,Biomedical Engineering,Food Science,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3