Abstract
Abstract
Background
Celiac disease is an intestinal chronic disorder with multifactorial etiology resulting in small intestinal mucosal injuries and malabsorption. In genetically predisposed individuals with HLA DQ2/DQ8 molecules, the gluten domains rich in glutamine and proline present gluten domains to gluten reactive CD4+ T cells causing injury to the intestine. In the present experimental design, the indigenous bacteria from wheat samples were studied for their gluten hydrolyzing functionality.
Results
Proteolytic activity of Bacillus spp. was confirmed spectrophotometrically and studied extensively on gliadin-derived synthetic enzymatic substrates, natural gliadin mixture, and synthetic highly immunogenic 33-mer peptide. The degradation of 33-mer peptide and the cleavage specificities of the selected isolates were analyzed by tandem mass spectrometry. The gluten content of the sourdough fermented by the chosen bacterial isolates was determined by R5 antibody based competitive ELISA. All the tested isolates efficiently hydrolyzed Z-YPQ-pNA, Z-QQP-pNA, Z-PPF-pNA, and Z-PFP-pNA and also cleaved 33-mer immunogenic peptide extensively. The gluten content of wheat sourdough was found to be below 110 mg/kg.
Conclusion
It has been inferred that four Bacillus spp especially GS 188 could be useful in developing gluten-reduced wheat food product for celiac disease prone individuals.
Funder
Department of Biotechnology, Governmnt of India
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference41 articles.
1. Sollid LM. Molecular basis of celiac disease. Ann Rev Immunol. 2000;18:53–81.
2. Visser J, Rozing J, Sapone A, Lammers K, Fasano A. Tight junctions, intestinal permeability, and autoimmunity: celiac disease and type 1 diabetes paradigms. Ann N Y Acad Sci. 2009;1165:195–205.
3. Gayathri D, Rashmi BS. Development of celiac disease; pathogenesis and strategies to control: a molecular approach. J Nutr Food Sci. 2014;4:310. https://doi.org/10.4172/2155-9600.1000310.
4. Mohindra S, Yachha SK, Srivastava A, Krishnani N, Aggarwal R, Ghoshal UC, Prasad KK, Naik SR. Coeliac disease in Indian children: assessment of clinical, nutritional and pathologic characteristics. J Health Popul Nutr. 2001;19:204–8.
5. Rizzello CG, De Angelis M, Di Cagno R, Camarca A, Silano M, Losito I, De Vincenzi M, De Bari MD, Palmisano F, Maurano F, Gianfrani C, Gobbetti M. Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: new perspectives for celiac disease. Appl Environ Microbiol. 2007;73:4499–507.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献