In vivo creation of plasmid pCRT01 and its use for the construction of carotenoid-producing Paracoccus spp. strains that grow efficiently on industrial wastes

Author:

Maj Anna,Dziewit Lukasz,Drewniak Lukasz,Garstka Maciej,Krucon Tomasz,Piatkowska Katarzyna,Gieczewska Katarzyna,Czarnecki Jakub,Furmanczyk Ewa,Lasek Robert,Baj Jadwiga,Bartosik DariuszORCID

Abstract

Abstract Background Carotenoids are natural tetraterpene pigments widely utilized in the food, pharmaceutical and cosmetic industries. Currently, chemical synthesis of these compounds outperforms their production in Escherichia coli or yeast due to the limited efficiency of the latter. The use of natural microbial carotenoid producers, such as bacteria of the genus Paracoccus (Alphaproteobacteria), may help to optimize this process. In order to couple the ability to synthesize these pigments with the metabolic versatility of this genus, we explored the possibility of introducing carotenoid synthesis genes into strains capable of efficient growth on simple low-cost media. Results We constructed two carotenoid-producing strains of Paracoccus carrying a new plasmid, pCRT01, which contains the carotenoid synthesis gene locus crt from Paracoccus marcusii OS22. The plasmid was created in vivo via illegitimate recombination between crt-carrying vector pABW1 and a natural “paracoccal” plasmid pAMI2. Consequently, the obtained fusion replicon is stably maintained in the bacterial population without the need for antibiotic selection. The introduction of pCRT01 into fast-growing “colorless” strains of Paracoccus aminophilus and Paracoccus kondratievae converted them into efficient producers of a range of both carotenes and xanthophylls. The exact profile of the produced pigments was dependent on the strain genetic background. To reduce the cost of carotenoid production in this system, we tested the growth and pigment synthesis efficiency of the two strains on various simple media, including raw industrial effluent (coal-fired power plant flue gas desulfurization wastewater) supplemented with molasses, an industrial by-product rich in sucrose. Conclusions We demonstrated a new approach for the construction of carotenoid-producing bacterial strains which relies on a single plasmid-mediated transfer of a pigment synthesis gene locus between Paracoccus strains. This strategy facilitates screening for producer strains in terms of synthesis efficiency, pigment profile and ability to grow on low-cost industrial waste-based media, which should increase the cost-effectiveness of microbial production of carotenoids.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Reference50 articles.

1. Kushwaha K, Saini A, Saraswat P, Agarwal MK, Saxena J. Colorful world of microbes: carotenoids and their applications. Adv Biol. 2014;2014:837891.

2. Hashimoto H, Uragami C, Cogdell RJ. Carotenoids and photosynthesis. Subcell Biochem. 2016;79:111–39.

3. Avalos J, Carmen Limon M. Biological roles of fungal carotenoids. Curr Genet. 2015;61(3):309–24.

4. Mathews MM, Sistrom WR. Function of carotenoid pigments in non-photosynthetic bacteria. Nature. 1959;184(Suppl 24):1892–3.

5. Handelman GJ, Dratz EA, Reay CC, van Kuijk JG. Carotenoids in the human macula and whole retina. Invest Ophthalmol Vis Sci. 1988;29(6):850–5.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3