Abstract
Abstract
Background
Carotenoids are natural tetraterpene pigments widely utilized in the food, pharmaceutical and cosmetic industries. Currently, chemical synthesis of these compounds outperforms their production in Escherichia coli or yeast due to the limited efficiency of the latter. The use of natural microbial carotenoid producers, such as bacteria of the genus Paracoccus (Alphaproteobacteria), may help to optimize this process. In order to couple the ability to synthesize these pigments with the metabolic versatility of this genus, we explored the possibility of introducing carotenoid synthesis genes into strains capable of efficient growth on simple low-cost media.
Results
We constructed two carotenoid-producing strains of Paracoccus carrying a new plasmid, pCRT01, which contains the carotenoid synthesis gene locus crt from Paracoccus marcusii OS22. The plasmid was created in vivo via illegitimate recombination between crt-carrying vector pABW1 and a natural “paracoccal” plasmid pAMI2. Consequently, the obtained fusion replicon is stably maintained in the bacterial population without the need for antibiotic selection. The introduction of pCRT01 into fast-growing “colorless” strains of Paracoccus aminophilus and Paracoccus kondratievae converted them into efficient producers of a range of both carotenes and xanthophylls. The exact profile of the produced pigments was dependent on the strain genetic background. To reduce the cost of carotenoid production in this system, we tested the growth and pigment synthesis efficiency of the two strains on various simple media, including raw industrial effluent (coal-fired power plant flue gas desulfurization wastewater) supplemented with molasses, an industrial by-product rich in sucrose.
Conclusions
We demonstrated a new approach for the construction of carotenoid-producing bacterial strains which relies on a single plasmid-mediated transfer of a pigment synthesis gene locus between Paracoccus strains. This strategy facilitates screening for producer strains in terms of synthesis efficiency, pigment profile and ability to grow on low-cost industrial waste-based media, which should increase the cost-effectiveness of microbial production of carotenoids.
Funder
Narodowe Centrum Badań i Rozwoju
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference50 articles.
1. Kushwaha K, Saini A, Saraswat P, Agarwal MK, Saxena J. Colorful world of microbes: carotenoids and their applications. Adv Biol. 2014;2014:837891.
2. Hashimoto H, Uragami C, Cogdell RJ. Carotenoids and photosynthesis. Subcell Biochem. 2016;79:111–39.
3. Avalos J, Carmen Limon M. Biological roles of fungal carotenoids. Curr Genet. 2015;61(3):309–24.
4. Mathews MM, Sistrom WR. Function of carotenoid pigments in non-photosynthetic bacteria. Nature. 1959;184(Suppl 24):1892–3.
5. Handelman GJ, Dratz EA, Reay CC, van Kuijk JG. Carotenoids in the human macula and whole retina. Invest Ophthalmol Vis Sci. 1988;29(6):850–5.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献