Isolation and Cultivation of Carotenoid-Producing Strains from Tidal Flat Sediment and Proposal of Croceibacterium aestuarii sp. nov., a Novel Carotenoid-Producing Species in the Family Erythrobacteraceae

Author:

Sun Xiao-Yan12,Dong Han12,Zhang Yu12,Gao Jia-Wei12,Zhou Peng3,Sun Cong12,Xu Lin12ORCID

Affiliation:

1. College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China

2. Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd., Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, China

3. Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China

Abstract

Carotenoids are extensively used in drugs, cosmetics, nutrients, and foods, owing to their antioxidant and anti-inflammatory characteristics. Diverse marine heterotrophic prokaryotes can accumulate carotenoids and become promising alternatives for the advancement of carotenoids production. In this research, 55 strains were isolated and cultivated from tidal flat sediment in Zhoushan and classified into the phyla Pseudomonadota (n = 24), Bacillota (n = 18), Bacteroidota (n = 9), and Actinomycetota (n = 4). Nine of them accumulated carotenoids, and most of them belonged to the families Flavobacteriaceae (n = 4) and Erythrobacteraceae (n = 4). Among those carotenoid-producing strains, one strain, designated as D39T, was proposed as one novel species belonging to the genus Croceibacterium through polyphasic taxonomy approaches. Genomic annotations and carotenoid compound determinations revealed that strain D39T encoded crtEBIYZG genes and mainly accumulated zeaxanthin as major carotenoids. Furthermore, carotenoid biosynthesis pathway in the majority of Croceibacterium strains were identical with that in the strain D39T, implying that Croceibacterium members can be sources of producing zeaxanthin. This study enhances knowledge of microbial biodiversity in tidal flats, proposes a novel carotenoid-producing Croceibacterium species, and elucidates carotenoid biosynthesis pathway in the genus Croceibacterium, which contribute to enriching marine carotenoid-producing strains and promoting a comprehensive insight into genomic contents of them.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

National Science and Technology Fundamental Resources Investigation Program of China

Fundamental Research Funds of Zhejiang Sci-Tech University

Open Fund of Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3