Paracoccus kondratievae produces poly(3‐hydroxybutyrate) under elevated temperature conditions

Author:

Moanis Radwa12,Geeraert Hannelore3,Van den Brande Niko3,Hennecke Ulrich4,Peeters Eveline1ORCID

Affiliation:

1. Research Group of Microbiology, Department of Bioengineering Sciences Vrije Universiteit Brussel Brussels Belgium

2. Faculty of Sciences, Botany and Microbiology Department Damanhour University Damanhour Egypt

3. Research Group of Physical Chemistry and Polymer Science Vrije Universiteit Brussel Brussels Belgium

4. Research Group of Organic Chemistry, Department of Chemistry and Department of Bioengineering Sciences Vrije Universiteit Brussel Brussels Belgium

Abstract

AbstractAs part of ongoing efforts to discover novel polyhydroxyalkanoate‐producing bacterial species, we embarked on characterizing the thermotolerant species, Paracoccus kondratievae, for biopolymer synthesis. Using traditional chemical and thermal characterization techniques, we found that P. kondratievae accumulates poly(3‐hydroxybutyrate) (PHB), reaching up to 46.8% of the cell's dry weight after a 24‐h incubation at 42°C. Although P. kondratievae is phylogenetically related to the prototypical polyhydroxyalkanoate producer, Paracoccus denitrificans, we observed significant differences in the PHB production dynamics between these two Paracoccus species. Notably, P. kondratievae can grow and produce PHB at elevated temperatures ranging from 42 to 47°C. Furthermore, P. kondratievae reaches its peak PHB content during the early stationary growth phase, specifically after 24 h of growth in a flask culture. This is then followed by a decline in the later stages of the stationary growth phase. The depolymerization observed in this growth phase is facilitated by the abundant presence of the PhaZ depolymerase enzyme associated with PHB granules. We observed the highest PHB levels when the cells were cultivated in a medium with glycerol as the sole carbon source and a carbon‐to‐nitrogen ratio of 10. Finally, we found that PHB production is induced as an osmotic stress response, similar to other polyhydroxyalkanoate‐producing species.

Funder

Vrije Universiteit Brussel

Bijzonder Onderzoeksfonds UGent

Fonds Wetenschappelijk Onderzoek

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3