Evolutionary and reverse engineering in Saccharomyces cerevisiae reveals a Pdr1p mutation-dependent mechanism for 2-phenylethanol tolerance

Author:

Xia Huili,Kang Yue,Ma Zilin,Hu Cuiyu,Yang Qiao,Zhang Xiaoling,Yang Shihui,Dai Jun,Chen Xiong

Abstract

Abstract Background 2-Phenylethanol (2-PE), a higher alcohol with a rose-like odor, inhibits growth of the producer strains. However, the limited knowledge regarding 2-PE tolerance mechanisms renders our current knowledge base insufficient to inform rational design. Results To improve the growth phenotype of Saccharomyces cerevisiae under a high 2-PE concentration, adaptive laboratory evolution (ALE) was used to generate an evolved 19–2 strain. Under 2-PE stress, its OD600 and growth rate increased by 86% and 22% than that of the parental strain, respectively. Through whole genome sequencing and reverse engineering, transcription factor Pdr1p mutation (C862R) was revealed as one of the main causes for increased 2-PE tolerance. Under 2-PE stress condition, Pdr1p mutation increased unsaturated fatty acid/saturated fatty acid ratio by 42%, and decreased cell membrane damage by 81%. Using STRING website, we identified Pdr1p interacted with some proteins, which were associated with intracellular ergosterol content, reactive oxygen species (ROS), and the ATP-binding cassette transporter. Also, the results of transcriptional analysis of genes encoded these proteins confirmed that Pdr1p mutation induced the expression of these genes. Compared with those of the reference strain, the ergosterol content of the PDR1_862 strain increased by 72%–101%, and the intracellular ROS concentration decreased by 38% under 2-PE stress. Furthermore, the Pdr1p mutation also increased the production of 2-PE (11% higher). Conclusions In the present work, we have demonstrated the use of ALE as a powerful tool to improve yeast tolerance to 2-PE. Based on the reverse engineering, transcriptional and physiological analysis, we concluded that Pdr1p mutation significantly enhanced the 2-PE tolerance of yeast by regulating the fatty acid proportion, intracellular ergosterol and ROS. It provides new insights on Pdr1p mediated 2-PE tolerance, which could help in the design of more robust yeasts for natural 2-PE synthesis.

Funder

the National Natural Science Foundations of China

Open Funding Project of the State Key Laboratory of Biocatalysis and Enzyme Engineering

the Natural Science Foundation of Hubei Provincial Department of Education

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3