Stepwise metabolic engineering of Candida tropicalis for efficient xylitol production from xylose mother liquor

Author:

Zhang Lihua,Chen Zhen,Wang Junhua,Shen Wei,Li Qi,Chen XianzhongORCID

Abstract

Abstract Background Commercial xylose purification produces xylose mother liquor (XML) as a major byproduct, which has become an inexpensive and abundant carbon source. A portion of this XML has been used to produce low-value-added products such as caramel but the remainder often ends up as an organic pollutant. This has become an issue of industrial concern. In this study, a uracil-deficient Candida tropicalis strain was engineered to efficiently convert XML to the commercially useful product xylitol. Results The xylitol dehydrogenase gene was deleted to block the conversion of xylitol to xylulose. Then, an NADPH regeneration system was added through heterologous expression of the Yarrowia lipolytica genes encoding 6-phosphate-gluconic acid dehydrogenase and 6-phosphate-glucose dehydrogenase. After process optimization, the engineered strain, C. tropicalis XZX-B4ZG, produced 97.10 g L− 1 xylitol in 120 h from 300 g L− 1 XML in a 5-L fermenter. The xylitol production rate was 0.82 g L− 1 h− 1 and the conversion rate was 92.40 %. Conclusions In conclusion, this study performed a combination of metabolic engineering and process optimizing in C. tropicalis to enhance xylitol production from XML. The use of C. tropicalis XZX-B4ZG, therefore, provided a convenient method to transform the industrial by-product XML into the useful material xylitol.

Funder

Natural Science Foundation of Jiangsu Province

the 111 Project

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3