flowEMMi: an automated model-based clustering tool for microbial cytometric data

Author:

Ludwig Joachim,zu Siederdissen Christian HönerORCID,Liu Zishu,Stadler Peter F.,Müller Susann

Abstract

Abstract Background Flow cytometry (FCM) is a powerful single-cell based measurement method to ascertain multidimensional optical properties of millions of cells. FCM is widely used in medical diagnostics and health research. There is also a broad range of applications in the analysis of complex microbial communities. The main concern in microbial community analyses is to track the dynamics of microbial subcommunities. So far, this can be achieved with the help of time-consuming manual clustering procedures that require extensive user-dependent input. In addition, several tools have recently been developed by using different approaches which, however, focus mainly on the clustering of medical FCM data or of microbial samples with a well-known background, while much less work has been done on high-throughput, online algorithms for two-channel FCM. Results We bridge this gap with , a model-based clustering tool based on multivariate Gaussian mixture models with subsampling and foreground/background separation. These extensions provide a fast and accurate identification of cell clusters in FCM data, in particular for microbial community FCM data that are often affected by irrelevant information like technical noise, beads or cell debris. outperforms other available tools with regard to running time and information content of the clustering results and provides near-online results and optional heuristics to reduce the running-time further. Conclusions is a useful tool for the automated cluster analysis of microbial FCM data. It overcomes the user-dependent and time-consuming manual clustering procedure and provides consistent results with ancillary information and statistical proof.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3