Unlocking the mechanism of action: a cost-effective flow cytometry approach for accelerating antimicrobial drug development

Author:

Mermans Fabian12ORCID,De Baets Hanna1,García-Timermans Cristina1ORCID,Teughels Wim2ORCID,Boon Nico1ORCID

Affiliation:

1. Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium

2. Department of Oral Health Sciences, KU Leuven & Dentistry (Periodontology), University Hospitals Leuven, Leuven, Belgium

Abstract

ABSTRACT Antimicrobial resistance is one of the greatest challenges to global health. While the development of new antimicrobials can combat resistance, low profitability reduces the number of new compounds brought to market. Elucidating the mechanism of action is crucial for developing new antimicrobials. This can become expensive as there are no universally applicable pipelines. Phenotypic heterogeneity of microbial populations resulting from antimicrobial treatment can be captured through flow cytometric fingerprinting. Since antimicrobials are classified into limited groups, the mechanism of action of known compounds can be used for predictive modeling. We demonstrate a cost-effective flow cytometry approach for determining the mechanism of action of new compounds. Cultures of Actinomyces viscosus and Fusobacterium nucleatum were treated with different antimicrobials and measured by flow cytometry. A Gaussian mixture mask was applied over the data to construct phenotypic fingerprints. Fingerprints were used to assess statistical differences between mechanism of action groups and to train random forest classifiers. Classifiers were then used to predict the mechanism of action of cephalothin. Statistical differences were found among the different mechanisms of action groups. Pairwise comparison showed statistical differences for 35 out of 45 pairs for A. viscosus and for 32 out of 45 pairs for F. nucleatum after 3.5 h of treatment. The best-performing random forest classifier yielded a Matthews correlation coefficient of 0.92 and the mechanism of action of cephalothin could be successfully predicted. These findings suggest that flow cytometry can be a cheap and fast alternative for determining the mechanism of action of new antimicrobials. IMPORTANCE In the context of the emerging threat of antimicrobial resistance, the development of novel antimicrobials is a commonly employed strategy to combat resistance. Elucidating the mechanism of action of novel compounds is crucial in this development but can become expensive, as no universally applicable pipelines currently exist. We present a novel flow cytometry-based approach capable of determining the mechanism of action swiftly and cost-effectively. The workflow aims to accelerate drug discovery and could help facilitate a more targeted approach for antimicrobial treatment of patients.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3