INFLECT: an R-package for cytometry cluster evaluation using marker modality

Author:

Verhoeff JanORCID,Abeln Sanne,Garcia-Vallejo Juan J.ORCID

Abstract

AbstractBackgroundCurrent methods of high-dimensional unsupervised clustering of mass cytometry data lack means to monitor and evaluate clustering results. Whether unsupervised clustering is correct is typically evaluated by agreement with dimensionality reduction techniques or based on benchmarking with manually classified cells. The ambiguity and lack of reproducibility of sequential gating has been replaced with ambiguity in interpretation of clustering results. On the other hand, spurious overclustering of data leads to loss of statistical power. We have developed INFLECT, an R-package designed to give insight in clustering results and provide an optimal number of clusters. In our approach, a mass cytometry dataset is overclustered intentionally to ensure the smallest phenotypically different subsets are captured using FlowSOM. A range of metacluster number endpoints are generated and evaluated using marker interquartile range and distribution unimodality checks. The fraction of marker distributions that pass these checks is taken as a measure of clustering success. The fraction of unimodal distributions within metaclusters is plotted against the number of generated metaclusters and reaches a plateau of diminishing returns. The inflection point at which this occurs gives an optimal point of capturing cellular heterogeneity versus statistical power.ResultsWe applied INFLECT to four publically available mass cytometry datasets of different size and number of markers. The unimodality score consistently reached a plateau, with an inflection point dependent on dataset size and number of dimensions. We tested both ConsenusClusterPlus metaclustering and hierarchical clustering. While hierarchical clustering is less computationally expensive and thus faster, it achieved similar results to ConsensusClusterPlus. The four datasets consisted of labeled data and we compared INFLECT metaclustering to published results. INFLECT identified a higher optimal number of metaclusters for all datasets. We illustrated the underlying heterogeneity within labels, showing that these labels encompass distinct types of cells.ConclusionINFLECT addresses a knowledge gap in high-dimensional cytometry analysis, namely assessing clustering results. This is done through monitoring marker distributions for interquartile range and unimodality across a range of metacluster numbers. The inflection point is the optimal trade-off between cellular heterogeneity and statistical power, applied in this work for FlowSOM clustering on mass cytometry datasets.

Funder

Amsterdam University Medical Centers

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3