Flora Capture: a citizen science application for collecting structured plant observations

Author:

Boho David,Rzanny Michael,Wäldchen Jana,Nitsche Fabian,Deggelmann Alice,Wittich Hans Christian,Seeland Marco,Mäder Patrick

Abstract

Abstract Background Digital plant images are becoming increasingly important. First, given a large number of images deep learning algorithms can be trained to automatically identify plants. Second, structured image-based observations provide information about plant morphological characteristics. Finally in the course of digitalization, digital plant collections receive more and more interest in schools and universities. Results We developed a freely available mobile application called Flora Capture allowing users to collect series of plant images from predefined perspectives. These images, together with accompanying metadata, are transferred to a central project server where each observation is reviewed and validated by a team of botanical experts. Currently, more than 4800 plant species, naturally occurring in the Central European region, are covered by the application. More than 200,000 images, depicting more than 1700 plant species, have been collected by thousands of users since the initial app release in 2016. Conclusion Flora Capture allows experts, laymen and citizen scientists to collect a digital herbarium and share structured multi-modal observations of plants. Collected images contribute, e.g., to the training of plant identification algorithms, but also suit educational purposes. Additionally, presence records collected with each observation allow contribute to verifiable records of plant occurrences across the world.

Funder

Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit

Bundesministerium für Bildung und Forschung

Thüringer Ministerium für Umwelt, Energie und Naturschutz

Stiftung Naturschutz Thüringen

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3