Theoretical characterisation of strand cross-correlation in ChIP-seq

Author:

Anzawa Hayato,Yamagata Hitoshi,Kinoshita KengoORCID

Abstract

Abstract Background Strand cross-correlation profiles are used for both peak calling pre-analysis and quality control (QC) in chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis. Despite its potential for robust and accurate assessments of signal-to-noise ratio (S/N) because of its peak calling independence, it remains unclear what aspects of quality such strand cross-correlation profiles actually measure. Results We introduced a simple model to simulate the mapped read-density of ChIP-seq and then derived the theoretical maximum and minimum of cross-correlation coefficients between strands. The results suggest that the maximum coefficient of typical ChIP-seq samples is directly proportional to the number of total mapped reads and the square of the ratio of signal reads, and inversely proportional to the number of peaks and the length of read-enriched regions. Simulation analysis supported our results and evaluation using 790 ChIP-seq data obtained from the public database demonstrated high consistency between calculated cross-correlation coefficients and estimated coefficients based on the theoretical relations and peak calling results. In addition, we found that the mappability-bias-correction improved sensitivity, enabling differentiation of maximum coefficients from the noise level. Based on these insights, we proposed virtual S/N (VSN), a novel peak call-free metric for S/N assessment. We also developed PyMaSC, a tool to calculate strand cross-correlation and VSN efficiently. VSN achieved most consistent S/N estimation for various ChIP targets and sequencing read depths. Furthermore, we demonstrated that a combination of VSN and pre-existing peak calling results enable the estimation of the numbers of detectable peaks for posterior experiments and assess peak calling results. Conclusions We present the first theoretical insights into the strand cross-correlation, and the results reveal the potential and the limitations of strand cross-correlation analysis. Our quality assessment framework using VSN provides peak call-independent QC and will help in the evaluation of peak call analysis in ChIP-seq experiments.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3