Author:
Zhu Xu,Zhao Lili,Huang Lihong,Yang Wenxian,Wang Liansheng,Yu Rongshan
Abstract
Abstract
Background
Metagenomic sequencing is an unbiased approach that can potentially detect all the known and unidentified strains in pathogen detection. Recently, nanopore sequencing has been emerging as a highly potential tool for rapid pathogen detection due to its fast turnaround time. However, identifying pathogen within species is nontrivial for nanopore sequencing data due to the high sequencing error rate.
Results
We developed the core gene alleles metagenome strain identification (cgMSI) tool, which uses a two-stage maximum a posteriori probability estimation method to detect pathogens at strain level from nanopore metagenomic sequencing data at low computational cost. The cgMSI tool can accurately identify strains and estimate relative abundance at 1× coverage.
Conclusions
We developed cgMSI for nanopore metagenomic pathogen detection within species. cgMSI is available at https://github.com/ZHU-XU-xmu/cgMSI.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献