High-fidelity elastic Green’s functions for subduction zone models consistent with the global standard geodetic reference system

Author:

Hori TakaneORCID,Agata Ryoichiro,Ichimura Tsuyoshi,Fujita Kohei,Yamaguchi Takuma,Iinuma Takeshi

Abstract

AbstractGreen’s functions (GFs) for elastic deformation due to unit slip on the fault plane comprise an essential tool for estimating earthquake rupture and underground preparation processes. These estimation results are often applied to generate important information for public such as seismic and tsunami hazard assessments. So, it is important to minimize the distortion of the estimation results on the numerical models used for calculating GFs to guarantee assessment reliability. For this purpose, we here calculated GFs based on a numerical model that is of high fidelity to obtain realistic topography and subsurface structural models of the Earth. We targeted two well-known subduction zones in Japan, the Nankai Trough and the Japan Trench. For these subduction zones, databases for realistic topography and subsurface structural models of the Earth are available in the “Japan integrated velocity structure model version 1”, which was proposed for earthquake hazard assessments conducted by the Japanese government. Furthermore, we eliminated the inconsistency in processing calculated GFs and space geodetic observation data for surface displacements, which is often overlooked, by using the same coordinate system. The ellipsoidal shape of the Earth, which is often approximated with a projected plane or a spherical shape, was also incorporated by faithfully following the definitions of the coordinate systems in Geodetic Reference System 1980, which is the global standard for space geodesy. To calculate elastic GFs based on such high-fidelity subduction zone databases with the ellipsoidal shape of the Earth, we introduced the finite element (FE) method. In the FE meshes, the resolution of the topography and subsurface structure is the same as that of the original databases. Recent development of the state-of-the-art computation techniques for the rapid calculation of crustal deformation using large-scale FE models allows for GF calculation based on such a high-fidelity model. However, it is generally not easy to perform such calculations. Thus, we released a library for the GFs calculated with 1-km grid spacing on the ground surface in this study to the geoscience community on a web server, aiming to contribute more reliable seismic and tsunami hazard assessment.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3