Stress change in southwest Japan due to the 1944–1946 Nankai megathrust rupture sequence based on a 3-D heterogeneous rheological model

Author:

Hashima AkinoriORCID,Hori Takane,Iinuma Takeshi,Murakami Sota,Fujita Kohei,Ichimura Tsuyoshi

Abstract

AbstractThe Nankai trough has repeatedly experienced large megathrust earthquakes at intervals of 100–200 years. The inland region of southwest (SW) Japan has a seismically active period from 50 years before to 10 years after megathrust earthquakes. To assess the activities of inland earthquakes after megathrust earthquakes, we need to quantitatively evaluate the postseismic stress accumulation on the inland source faults considering plausible viscoelastic relaxation. Recent studies have shown the importance of low-viscosity layers along the lithosphere-asthenosphere boundary (LAB layer) in postseismic deformation. In the present study, we focus on the most recent ruptures, the 1944 M7.9 Tonankai and the 1946 M8.0 Nankai earthquakes, estimating the 4-year stress change on the source faults in SW Japan in a forward modeling approach. The 1944–1946 megathrust rupture sequence was followed by severe ~ M7 inland earthquakes, such as the 1945 M6.8 Mikawa and 1948 M7.1 Fukui earthquakes. For stress calculation, we used a highly detailed finite element model incorporating the actual topography and the plausible viscoelastic underground structure from past studies. The calculated inland stress field shows the dominance of the coseismic change during the 1944 and 1946 earthquakes and little contribution from viscoelastic relaxation. In contrast, viscoelastic relaxation has a significant effect on stress in the slab, indicating the importance of quantifying the viscosity of the LAB layer. Based on the calculated stress, we evaluated the change in the Coulomb failure stress (ΔCFS) on each source fault. The ΔCFS is generally positive on the strike-slip faults east of 135°E due to the 1944 rupture. In contrast, the ΔCFS on the faults west of 135°E, including the Median Tectonic Line segments, became positive due to the 1946 rupture. The occurrence of the damaging earthquakes in 1945 and 1948 can be explained by the calculated ΔCFS. The ΔCFS on the recent earthquake faults of the recent damaging earthquakes such as the 2016 M7.2 Kumamoto earthquake is generally negative, suggesting the delay in stress accumulation. The ΔCFS on the source faults of the intra-slab earthquakes differ significantly as large as tens of kilopascals depending on the viscosity of the LAB layer. Graphical Abstract

Funder

Japan Society for the Promotion of Science

the Ministry of Education, Culture, Sports, Science and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3