Mesh size effect on finite source inversion with 3-D finite-element modelling

Author:

Kim Minsu1,So Byung-Dal1ORCID,Kim SatByul1,Jo Taehwan2,Chang Sung-Joon1

Affiliation:

1. Department of Geophysics, Kangwon National University , Chuncheon 24341 , South Korea

2. Research department of Earthquake and Volcano , Korea Meteorological Administration, Seoul 07062 , South Korea

Abstract

SUMMARY Three-dimensional finite-element models, which can handle the stress perturbations caused by subsurface mechanical heterogeneities and fault interactions, have been combined with the finite source inversion to estimate the coseismic slip distribution over the fault plane. However, the mesh grid for discretizing the governing equations in the finite-element model significantly affects the numerical accuracy. In this study, we performed kinematic finite source inversion with idealized (regular observation point array; M1A–M1D) and regional (GEONET, GPS Earthquake Observation Network System stations in Japan; M2A–M2H) models with different mesh sizes to quantitatively analyse the effect of the mesh grid size around the fault plane on the inverted fault slip distribution. Synthetic observation data vectors obtained from the finest models (M1A and M2A) are compared with those from the coarser models (M1B–M1D and M2B–M2H), which were adopted to construct Green's function matrix. We found that the coarser mesh models derived a smaller surface displacement, leading to a decrease in the norm of Green's function matrix, which in turn influences the fault slip magnitude from the finite source inversion. Finally, we performed the source inversion for the fault slip distribution of the 2011 Mw 9.0 Tohoku–Oki earthquake using the coseismic surface displacements recorded at the GEONET and seafloor stations and finite-element modelling. By reducing the mesh size on the fault, we confirmed that the estimated magnitude of fault slip converged to approximately 80 m, which is consistent with the range of fault slip amounts from previous studies based on the Okada model. At least 0.88 million total domain elements and a 6.7 km2 mesh size on the fault plane with an area of 240 × 720 km2 are required for the convergence of the fault slip. Furthermore, we found that the location of the maximum fault slip is less sensitive to the mesh size, implying that source inversion based on a coarse mesh model (i.e. less than 0.5 million elements and > ∼60 km2 mesh size) can quickly provide the rough fault slip distribution.

Funder

National Research Foundation of Korea

MSIT

KIMST

Ministry of Oceans and Fisheries

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3