Rhizobial exopolysaccharides: genetic control and symbiotic functions

Author:

Skorupska Anna,Janczarek Monika,Marczak Małgorzata,Mazur Andrzej,Król Jarosław

Abstract

Abstract Specific complex interactions between soil bacteria belonging to Rhizobium, Sinorhizobium, Mesorhizobium, Phylorhizobium, Bradyrhizobium and Azorhizobium commonly known as rhizobia, and their host leguminous plants result in development of root nodules. Nodules are new organs that consist mainly of plant cells infected with bacteroids that provide the host plant with fixed nitrogen. Proper nodule development requires the synthesis and perception of signal molecules such as lipochitooligosaccharides, called Nod factors that are important for induction of nodule development. Bacterial surface polysaccharides are also crucial for establishment of successful symbiosis with legumes. Sugar polymers of rhizobia are composed of a number of different polysaccharides, such as lipopolysaccharides (LPS), capsular polysaccharides (CPS or K-antigens), neutral β-1, 2-glucans and acidic extracellular polysaccharides (EPS). Despite extensive research, the molecular function of the surface polysaccharides in symbiosis remains unclear. This review focuses on exopolysaccharides that are especially important for the invasion that leads to formation of indetermined (with persistent meristem) type of nodules on legumes such as clover, vetch, peas or alfalfa. The significance of EPS synthesis in symbiotic interactions of Rhizobium leguminosarum with clover is especially noticed. Accumulating data suggest that exopolysaccharides may be involved in invasion and nodule development, bacterial release from infection threads, bacteroid development, suppression of plant defense response and protection against plant antimicrobial compounds. Rhizobial exopolysaccharides are species-specific heteropolysaccharide polymers composed of common sugars that are substituted with non-carbohydrate residues. Synthesis of repeating units of exopolysaccharide, their modification, polymerization and export to the cell surface is controlled by clusters of genes, named exo/exs, exp or pss that are localized on rhizobial megaplasmids or chromosome. The function of these genes was identified by isolation and characterization of several mutants disabled in exopolysaccharide synthesis. The effect of exopolysaccharide deficiency on nodule development has been extensively studied. Production of exopolysaccharides is influenced by a complex network of environmental factors such as phosphate, nitrogen or sulphur. There is a strong suggestion that production of a variety of symbiotically active polysaccharides may allow rhizobial strains to adapt to changing environmental conditions and interact efficiently with legumes.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3