Isolation and Characterization of High-Temperature-Tolerant Mutants of Bradyrhizobium diazoefficiens USDA110 by Carbon-Ion Beam Irradiation

Author:

Satoh Katsuya1,Takeda Kiyoko2,Nagafune Ikuko1,Chik Wan Dalila Wan13ORCID,Ohkama-Otsu Naoko2ORCID,Okazaki Shin2ORCID,Yokoyama Tadashi2,Hase Yoshihiro1

Affiliation:

1. Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki-machi, Takasaki 370-1292, Gunma, Japan

2. Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu 183-8509, Tokyo, Japan

3. Agrotechnology & Bioscience, Malaysian Nuclear Agency, Kajang 43000, Selangor, Malaysia

Abstract

Biofertilizers are promising technologies for achieving sustainable agriculture. However, high-temperature tolerance is a constraint that limits the function of microbial inoculants. To characterize the genetic changes responsible for the high-temperature tolerance of rhizobia, mutant screening was performed using Bradyrhizobium diazoefficiens USDA110. The wild-type cells were mutagenized with carbon-ion irradiation, and two mutant strains, designated M10 and M14, were obtained after a three-day heat-shock treatment at 43 °C. In particular, M14 showed superior growth at 36 °C, at which temperature growth of the wild type was extremely slow, whereas M14 grew more slowly than the wild type at 32 °C. Whole-genome sequencing revealed that M10 had seven point mutations, whereas M14 had eight point mutations together with a 1.27 Mb inversion. RNA sequencing showed that the number of differentially expressed genes greatly exceeded the actual number of induced mutations. In M14, a gene cluster associated with pyruvate metabolism was markedly downregulated, probably because of disjunction with the promoter region after inversion, and was considered to be the cause of the slow growth rate of M14 at 32 °C. Notably, transmembrane proteins, including porins, were enriched among the genes upregulated in both M10 and M14. M14 was confirmed to retain symbiotic functions with soybeans. These results indicate that high-temperature tolerance was conferred by random mutagenesis while the symbiotic functions of rhizobia was maintained.

Funder

Nuclear Researchers Exchange Program FY 2023 of the Ministry of Education, Culture, Sports, Science and Technology of Japan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3