Transformation of the matrix structure of shrimp shells during bacterial deproteination and demineralization

Author:

Xu Youmei,Bajaj Mini,Schneider Reinhard,Grage Stephan L,Ulrich Anne S,Winter Josef,Gallert Claudia

Abstract

Abstract Background After cellulose and starch, chitin is the third-most abundant biopolymer on earth. Chitin or its deacetylated derivative chitosan is a valuable product with a number of applications. It is one of the main components of shrimp shells, a waste product of the fish industry. To obtain chitin from Penaeus monodon, wet and dried shrimp shells were deproteinated with two specifically enriched proteolytic cultures M1 and M2 and decalcified by in-situ lactic acid forming microorganisms. The viscosity of biologically processed chitin was compared with chemically processed chitin. The former was further investigated for purity, structure and elemental composition by several microscopic techniques and 13C solid state NMR spectroscopy. Results About 95% of the protein of wet shrimp shells was removed by proteolytic enrichment culture M2 in 68 h. Subsequent decalcification by lactic acid bacteria (LAB) took 48 h. Deproteination of the same amount of dried shrimps that contained a 3 × higher solid content by the same culture was a little bit faster and was finished after 140 h. The viscosity of chitin was in the order of chemically processed chitin > bioprocessed chitin > commercially available chitin. Results revealed changes in fine structure and chemical composition of the epi-, exo- and endocuticle of chitin from shrimp shells during microbial deproteination and demineralization. From transmission electron microscopy (TEM) overlays and electron energy loss spectroscopy (EELS) analysis, it was found that most protein was present in the exocuticle, whereas most chitin was present in the endocuticle. The calcium content was higher in the endocuticle than in the exocuticle.13C solid state NMR spectra of different chitin confirmed < 3% impurities in the final product. Conclusions Bioprocessing of shrimp shell waste resulted in a chitin with high purity. Its viscosity was higher than that of commercially available chitin but lower than that of chemically prepared chitin in our lab. Nevertheless, the biologically processed chitin is a promising alternative for less viscous commercially available chitin. Highly viscous chitin could be generated by our chemical method. Comprehensive structural analyses revealed the distribution of the protein and Ca matrix within the shrimp shell cuticle which might be helpful in developing shrimp waste processing techniques.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3