Author:
Catena Valeria,Bruno Tiziana,Iezzi Simona,Matteoni Silvia,Salis Annalisa,Sorino Cristina,Damonte Gianluca,Fanciulli Maurizio
Abstract
Abstract
Background
Che-1/AATF (Che-1) is an RNA polymerase II binding protein involved in several cellular processes, including proliferation, apoptosis and response to stress. We have recently demonstrated that Che-1 is able to promote cell proliferation by sustaining global histone acetylation in multiple myeloma (MM) cells where it interacts with histone proteins and competes with HDAC class I members for binding.
Methods
Site-directed Mutagenesis was performed to generate a Che-1 mutant (Che-1 3S) lacking three serine residues (Ser316, Ser320 and Ser321) in 308–325 aa region. Western blot experiments were conducted to examine the effect of depletion or over-expression of Che-1 and Che-1 3S mutant on histone acetylation, in different human cancer cell lines. Proliferation assays were assessed to estimate the change in cells number when Che-1 was over-expressed or deleted. Immunoprecipitation assays were performed to evaluate Che-1/histone H3 interaction when Ser316, Ser320 and Ser321 were removed. The involvement of CK2 kinase in Che-1 phosphorylation at these residues was analysed by in vitro kinase, 2D gel electrophoresis assays and mass spectrometry analysis.
Results
Here, we confirmed that Che-1 depletion reduces cell proliferation with a concomitant general histone deacetylation in several tumor cell lines. Furthermore, we provided evidence that CK2 protein kinase phosphorylates Che-1 at Ser316, Ser320 and Ser321 and that these modifications are required for Che-1/histone H3 binding. These results improve our understanding onto the mechanisms by which Che-1 regulates histone acetylation and cell proliferation.
Conclusions
Che-1 phosphorylation at Ser316, Ser320 and Ser321 by CK2 promotes the interaction with histone H3 and represents an essential requirement for Che-1 pro-proliferative ability.
Funder
Associazione Italiana per la Ricerca sul Cancro
Ministero della Salute
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献