Evaluation of reanalysis and global meteorological products in Beas river basin of North-Western Himalaya

Author:

Bhattacharya Tanmoyee,Khare Deepak,Arora Manohar

Abstract

AbstractIt is a great challenge to obtain reliable gridded meteorological data in some data-scarce and complex territories like the Himalaya region. Less dense observed raingauge data are unable to represent rainfall variability in the Beas river basin of North-Western Himalaya. In this study four reanalyses (MERRA, ERA-Interim, JRA-55 and CFSR) and one global meteorological forcing data WFDEI have been used to evaluate the potential of the products to represent orographic rainfall pattern of Beas river basin using hydrology model. The modeled climate data have compared with observed climate data for a long term basis. A comparison of various rainfall and temperature products helps to determine uniformity and disparity between various estimates. Results show that all temperature data have a good agreement with gridded observed data. ERA-Interim temperature data is better in terms of bias, RMSE (Root Mean Square Error), and correlation compared to other data. On the other hand, MERRA, ERA-Interim and JRA-55 models have overestimated rainfall values, but CFSR and WFDEI models have underestimated rainfall values to the measured values. Variable Infiltration Capacity (VIC), a macroscale distributed hydrology model has been successfully applied to indirectly estimate the performance of five gridded meteorological data to represent Beas river basin rainfall pattern. The simulation result of the VIC hydrology model forced by these data reveals that the discharge of ERA-Interim has a good agreement with observed streamflow. In contrast there is an overestimated streamflow observed for MERRA reanalysis estimate. JRA-55, WFDEI, and CFSR data underestimate the streamflow. The reanalysis products are also poor in capturing the seasonal hydrograph pattern. The ERA-Interim product better represents orographic rainfall for the Beas river basin. The reason may be the ERA-Interim uses a four-dimensional variational analysis model during assimilation. The major drawback of MERRA is the non-inclusion of observed precipitation data during assimilation and modeling error. The poor performance of JRA-55, CFSR and WFDEI is due to the gauge rainfall data assimilation error. This research finding will help for broader research on hydrology and meteorology of the Himalayan region.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3