Affiliation:
1. 1 Department of Civil Engineering, National Institute of Technology, Hamirpur 177005, India
Abstract
ABSTRACT
The analysis of rainfall variability has significant implications for environmental studies since it influences the agrarian economy of regions such as the western Himalayas. The main objective of this research is to identify future precipitation trends in parts of the Beas River basin using modeled data from three models employed in the Climate Model Intercomparison Project Phase 6. The ACCESS, CanESM, and NorESM models were utilized to obtain modeled meteorological data from 2015 to 2100 (86 years). Data from global climate models were downscaled to the regional level and validated with the India Meteorological Department (IMD). Mention that the modeled data were downscaled from the regional level to the local level. The nonparametric trends test, modified Mann–Kendall, and Sen's slope estimator (Q) were employed to detect the trend and magnitude. Furthermore, the sub-trends of the data series were evaluated utilizing the innovative trend analysis (ITA) approach. Results have shown a significant increasing trend in future timescales, indicating the more frequent extreme events in the basin under all scenarios. The basin has shown a maximum slope of 24.9 (ITA) and 12.2 (Sen's slope).This study findings hold significant implications for policymakers and water resource managers.