Detecting unknown malicious code by applying classification techniques on OpCode patterns
Author:
Publisher
Springer Science and Business Media LLC
Link
http://link.springer.com/content/pdf/10.1186/2190-8532-1-1.pdf
Reference49 articles.
1. Shabtai A, Moskovitch R, Elovici Y, Glezer C: Detection of malicious code by applying machine learning classifiers on static features: A state-of-the-art survey. Information Security Technical Report 2009,14(1):1–34. 10.1016/j.istr.2009.03.001
2. Griffin K, Schneider S, Hu X, Chiueh T: Automatic generation of string signatures for malware detection. In 12th International Symposium on Recent Advances in Intrusion Detection. Heidelberg: Springer; 2009:101–120.
3. Rieck K, Holz T, Düssel P, Laskov P: Learning and classification of malware behavior. In Conference on Detection of Intrusions and Malware & Vulnerability Assessment. Heidelberg: Springer; 2008:108–125.
4. Bailey M, Oberheide J, Andersen J, Mao ZM, Jahanian F, Nazario J: Automated classification and analysis of Internet malware. In 12th International Symposium on Recent Advances in Intrusion Detection. Heidelberg: Springer; 2007:178–197.
5. Lee W, Stolfo SJ: A framework for constructing features and models for intrusion detection systems. ACM Transactions on Information and System Security 2000,3(4):227–261. 10.1145/382912.382914
Cited by 151 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Image-based malware detection based on convolution neural network with autoencoder in Industrial Internet of Things using Software Defined Networking Honeypot;Engineering Applications of Artificial Intelligence;2024-07
2. Linux IoT Malware Variant Classification Using Binary Lifting and Opcode Entropy;Electronics;2024-06-18
3. Efficient malware detection through inter-component communication analysis;Cluster Computing;2024-06-02
4. An Enhanced Feature-Based Hybrid Approach for Adversarial PDF Malware Detection;2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT);2024-05-02
5. A novel machine learning approach for detecting first-time-appeared malware;Engineering Applications of Artificial Intelligence;2024-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3