Affiliation:
1. Georgia Institute of Technology, Atlanta
2. Columbia Univ., New York, NY
Abstract
Intrusion detection (ID) is an important component of infrastructure protection mechanisms. Intrusion detection systems (IDSs) need to be accurate, adaptive, and extensible. Given these requirements and the complexities of today's network environments, we need a more systematic and automated IDS development process rather that the pure knowledge encoding and engineering approaches. This article describes a novel framework, MADAM ID, for Mining Audit Data for Automated Models for Instrusion Detection. This framework uses data mining algorithms to compute activity patterns from system audit data and extracts predictive features from the patterns. It then applies machine learning algorithms to the audit records taht are processed according to the feature definitions to generate intrusion detection rules. Results from the 1998 DARPA Intrusion Detection Evaluation showed that our ID model was one of the best performing of all the participating systems. We also briefly discuss our experience in converting the detection models produced by off-line data mining programs to real-time modules of existing IDSs.
Publisher
Association for Computing Machinery (ACM)
Subject
Safety, Risk, Reliability and Quality,General Computer Science
Reference30 articles.
1. Mining association rules between sets of items in large databases
2. ANDERSON D. FRIVOLD T. AND VALDES A. 1995. Next-generation intrusion detection expert system (NIDES): A summary. SRI-CSL-95-07 (May). ANDERSON D. FRIVOLD T. AND VALDES A. 1995. Next-generation intrusion detection expert system (NIDES): A summary. SRI-CSL-95-07 (May).
Cited by
381 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献