Linux IoT Malware Variant Classification Using Binary Lifting and Opcode Entropy

Author:

Ramamoorthy Jayanthi1,Gupta Khushi1,Shashidhar Narasimha K.1,Varol Cihan1ORCID

Affiliation:

1. Department of Computer Science, Sam Houston State University, Huntsville, TX 77340, USA

Abstract

Binary function analysis is fundamental in understanding the behavior and genealogy of malware. The detection, classification, and analysis of Linux IoT malware and its variants present significant challenges due to the wide range of architectures supported by the Linux IoT platform. This study concentrates on static analysis using binary lifting techniques to extract and analyze Intermediate Representation (IR) opcode sequences. We introduce a set of statistical entropy-based features derived from these IR opcode sequences, establishing a practical and straightforward methodology for machine learning classification models. By exclusively analyzing function metadata and opcode entropy, our architecture-agnostic approach not only efficiently detects malware but also classifies its variants with a high degree of accuracy, achieving an F1 score of 97%. The proposed approach offers a robust alternative for enhancing malware detection and variant identification frameworks for IoT devices.

Publisher

MDPI AG

Reference22 articles.

1. Howarth, J. (2024, May 09). 80+ Amazing IoT Statistics (2024–2030)—explodingtopics.com. Available online: https://explodingtopics.com/blog/iot-stats.

2. A survey of IoT malware and detection methods based on static features;Ngo;ICT Express,2020

3. (2024, May 09). Zscaler ThreatLabz Finds a 400% Increase in IoT and OT Malware Attacks Year-over-Year. Available online: https://www.zscaler.com/press/zscaler-threatlabz-finds-400-increase-iot-and-ot-malware-attacks-year-over-year-underscoring.

4. Angrishi, K. (2017). Turning internet of things (iot) into internet of vulnerabilities (iov): Iot botnets. arXiv.

5. Iot malware: Comprehensive survey, analysis framework and case studies;Costin;BlackHat USA,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3