Investigating the effectiveness of one-class and binary classification for fraud detection

Author:

Leevy Joffrey L.,Hancock John,Khoshgoftaar Taghi M.,Abdollah Zadeh Azadeh

Abstract

AbstractResearch into machine learning methods for fraud detection is of paramount importance, largely due to the substantial financial implications associated with fraudulent activities. Our investigation is centered around the Credit Card Fraud Dataset and the Medicare Part D dataset, both of which are highly imbalanced. The Credit Card Fraud Detection Dataset is large data and contains actual transactional content, which makes it an ideal benchmark for credit card fraud detection. The Medicare Part D dataset is big data, providing researchers the opportunity to examine national trends and patterns related to prescription drug usage and expenditures. This paper presents a detailed comparison of One-Class Classification (OCC) and binary classification algorithms, utilizing eight distinct classifiers. OCC is a more appealing option, since collecting a second label for binary classification can be very expensive and not possible to obtain within a reasonable time frame. We evaluate our models based on two key metrics: the Area Under the Precision-Recall Curve (AUPRC)) and the Area Under the Receiver Operating Characteristic Curve (AUC). Our results show that binary classification consistently outperforms OCC in detecting fraud within both datasets. In addition, we found that CatBoost is the most performant among the classifiers tested. Moreover, we contribute novel results by being the first to publish a performance comparison of OCC and binary classification specifically for fraud detection in the Credit Card Fraud and Medicare Part D datasets.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beyond Supervised: The Rise of Self-Supervised Learning in Autonomous Systems;Information;2024-08-16

2. Distributed Image Classification on Big Data Platforms: A Gradient Boosted Trees Approach;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

3. Synthesizing class labels for highly imbalanced credit card fraud detection data;Journal of Big Data;2024-03-09

4. A Novel Approach to Synthesize Class Labels in Highly Imbalanced Large Data;2023 IEEE 5th International Conference on Cognitive Machine Intelligence (CogMI);2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3