Abstract
AbstractLabel noise is an important data quality issue that negatively impacts machine learning algorithms. For example, label noise has been shown to increase the number of instances required to train effective predictive models. It has also been shown to increase model complexity and decrease model interpretability. In addition, label noise can cause the classification results of a learner to be poor. In this paper, we detect label noise with three unsupervised learners, namely $$\textit{principal component analysis} \hbox { (PCA)}$$
principal component
analysis
(PCA)
, $$\textit{independent component analysis} \hbox { (ICA)}$$
independent component
analysis
(ICA)
, and autoencoders. We evaluate these three learners on a credit card fraud dataset using multiple noise levels, and then compare results to the traditional Tomek links noise filter. Our binary classification approach, which considers label noise instances as anomalies, uniquely uses reconstruction errors for noisy data in order to identify and filter label noise. For detecting noisy instances, we discovered that the autoencoder algorithm was the top performer (highest recall score of 0.90), while Tomek links performed the worst (highest recall score of 0.62).
Publisher
Springer Science and Business Media LLC
Subject
Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献