Beyond Supervised: The Rise of Self-Supervised Learning in Autonomous Systems

Author:

Taherdoost Hamed12ORCID

Affiliation:

1. Department of Arts, Communications and Social Sciences, University Canada West, Vancouver, BC V6B 1V9, Canada

2. GUS Institute, Global University Systems, London EC1N 2LX, UK

Abstract

Supervised learning has been the cornerstone of many successful medical imaging applications. However, its reliance on large labeled datasets poses significant challenges, especially in the medical domain, where data annotation is time-consuming and expensive. In response, self-supervised learning (SSL) has emerged as a promising alternative, leveraging unlabeled data to learn meaningful representations without explicit supervision. This paper provides a detailed overview of supervised learning and its limitations in medical imaging, underscoring the need for more efficient and scalable approaches. The study emphasizes the importance of the area under the curve (AUC) as a key evaluation metric in assessing SSL performance. The AUC offers a comprehensive measure of model performance across different operating points, which is crucial in medical applications, where false positives and negatives have significant consequences. Evaluating SSL methods based on the AUC allows for robust comparisons and ensures that models generalize well to real-world scenarios. This paper reviews recent advances in SSL for medical imaging, demonstrating their potential to revolutionize the field by mitigating challenges associated with supervised learning. Key results show that SSL techniques, by leveraging unlabeled data and optimizing performance metrics like the AUC, can significantly improve the diagnostic accuracy, scalability, and efficiency in medical image analysis. The findings highlight SSL’s capability to reduce the dependency on labeled datasets and present a path forward for more scalable and effective medical imaging solutions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3