Semantic context driven language descriptions of videos using deep neural network

Author:

Naik DineshORCID,Jaidhar C. D.

Abstract

AbstractThe massive addition of data to the internet in text, images, and videos made computer vision-based tasks challenging in the big data domain. Recent exploration of video data and progress in visual information captioning has been an arduous task in computer vision. Visual captioning is attributable to integrating visual information with natural language descriptions. This paper proposes an encoder-decoder framework with a 2D-Convolutional Neural Network (CNN) model and layered Long Short Term Memory (LSTM) as the encoder and an LSTM model integrated with an attention mechanism working as the decoder with a hybrid loss function. Visual feature vectors extracted from the video frames using a 2D-CNN model capture spatial features. Specifically, the visual feature vectors are fed into the layered LSTM to capture the temporal information. The attention mechanism enables the decoder to perceive and focus on relevant objects and correlate the visual context and language content for producing semantically correct captions. The visual features and GloVe word embeddings are input into the decoder to generate natural semantic descriptions for the videos. The performance of the proposed framework is evaluated on the video captioning benchmark dataset Microsoft Video Description (MSVD) using various well-known evaluation metrics. The experimental findings indicate that the suggested framework outperforms state-of-the-art techniques. Compared to the state-of-the-art research methods, the proposed model significantly increased all measures, B@1, B@2, B@3, B@4, METEOR, and CIDEr, with the score of 78.4, 64.8, 54.2, and 43.7, 32.3, and 70.7, respectively. The progression in all scores indicates a more excellent grasp of the context of the inputs, which results in more accurate caption prediction.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3