Unsupervised feature learning-based encoder and adversarial networks

Author:

Suryawati Endang,Pardede Hilman F.ORCID,Zilvan Vicky,Ramdan Ade,Krisnandi Dikdik,Heryana Ana,Yuwana R. Sandra,Kusumo R. Budiarianto Suryo,Arisal Andria,Supianto Ahmad Afif

Abstract

AbstractIn this paper, we propose a novel deep learning-based feature learning architecture for object classification. Conventionally, deep learning methods are trained with supervised learning for object classification. But, this would require large amount of training data. Currently there are increasing trends to employ unsupervised learning for deep learning. By doing so, dependency on the availability of large training data could be reduced. One implementation of unsupervised deep learning is for feature learning where the network is designed to “learn” features automatically from data to obtain good representation that then could be used for classification. Autoencoder and generative adversarial networks (GAN) are examples of unsupervised deep learning methods. For GAN however, the trajectories of feature learning may go to unpredicted directions due to random initialization, making it unsuitable for feature learning. To overcome this, a hybrid of encoder and deep convolutional generative adversarial network (DCGAN) architectures, a variant of GAN, are proposed. Encoder is put on top of the Generator networks of GAN to avoid random initialisation. We called our method as EGAN. The output of EGAN is used as features for two deep convolutional neural networks (DCNNs): AlexNet and DenseNet. We evaluate the proposed methods on three types of dataset and the results indicate that better performances are achieved by our proposed method compared to using autoencoder and GAN.

Funder

Kementerian Riset, Teknologi dan Pendidikan Tinggi

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3