Recognizing Bearings’ Degradation Stage Using Multimodal Autoencoder to Learn Features from Different Time Series

Author:

Alfeo Antonio Luca,Cimino Mario G. C. A.,Gagliardi GuidoORCID

Abstract

AbstractUtilizing machine learning technologies to monitor assets’ health conditions can improve the effectiveness of maintenance activities. However, accurately recognizing the current health degradation stages of industrial assets requires a time-consuming manual feature extraction due to the wide range of observable measures (e.g., temperature, vibration) and behaviors characterizing assets’ degradation. To address this issue, feature learning technology can transform minimally processed time series into informative features, i.e., able to simplify the classification task (e.g., recognizing degradation stages) regardless of the specific machine learning classifier employed. In this work, minimally preprocessed time series of vibration and temperature of industrial bearings are exploited by an autoencoder-based architecture to extract degradation-representative features to be used for recognizing their degradation stages. Different autoencoder architectures are employed to compare their data fusion strategies. The effectiveness of the proposed approach is evaluated in terms of recognition performance and the quality of the learned features by using a publicly available real-world dataset and comparing the proposed approach against a state-of-the-art feature learning technology. We tested three different multimodal autoencoder-based feature learning approaches, i.e., shared-input autoencoder (SAE), multimodal autoencoder (MMAE), and partition-based autoencoder (PAE). All the AE-based architecture results in classification performances greater or comparable with the state-of-the-art feature learning technology, despite being trained in an unsupervised fashion. Also, the features provided via PAE correspond to the greatest performances in recognizing bearings’ degradation stage, providing high-quality features both from a classification and clustering perspective. Unsupervised feature learning methodologies based on multimodal autoencoders are capable of learning high-quality features. These result in greater degradation stages recognition performances when compared to supervised state-of-the-art feature learning technology. Also, this enables the correct representation of the expected progressive degradation of the bearing.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3