Bilingual video captioning model for enhanced video retrieval

Author:

Alrebdi Norah,Al-Shargabi Amal A.

Abstract

AbstractMany video platforms rely on the descriptions that uploaders provide for video retrieval. However, this reliance may cause inaccuracies. Although deep learning-based video captioning can resolve this problem, it has some limitations: (1) traditional keyframe extraction techniques do not consider video length/content, resulting in low accuracy, high storage requirements, and long processing times; (2) Arabic language support in video captioning is not extensive. This study proposes a new video captioning approach that uses an efficient keyframe extraction method and supports both Arabic and English. The proposed keyframe extraction technique uses time- and content-based approaches for better quality captions, fewer storage space requirements, and faster processing. The English and Arabic models use a sequence-to-sequence framework with long short-term memory in both the encoder and decoder. Both models were evaluated on caption quality using four metrics: bilingual evaluation understudy (BLEU), metric for evaluation of translation with explicit ORdering (METEOR), recall-oriented understudy of gisting evaluation (ROUGE-L), and consensus-based image description evaluation (CIDE-r). They were also evaluated using cosine similarity to determine their suitability for video retrieval. The results demonstrated that the English model performed better with regards to caption quality and video retrieval. In terms of BLEU, METEOR, ROUGE-L, and CIDE-r, the English model scored 47.18, 30.46, 62.07, and 59.98, respectively, whereas the Arabic model scored 21.65, 36.30, 44.897, and 45.52, respectively. According to the video retrieval, the English and Arabic models successfully retrieved 67% and 40% of the videos, respectively, with 20% similarity. These models have potential applications in storytelling, sports commentaries, and video surveillance.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Reference62 articles.

1. Ramesh A et al. Zero-shot text-to-image generation. In: International conference on machine learning; 2021.

2. OrCam MyEye 2. 0—for people who are blind or visually impaired. https://www.orcam.com/en/myeye2/. Accessed 20 Nov 2022.

3. Bebis G, Egbert D, Member S, Shah M. Review of computer vision education. IEEE Trans Educ. 2003;46:1–20.

4. Wiley V, Lucas T. Computer vision and image processing: a paper review. Int J Artif Intell Res. 2018;2:29–36.

5. Hirschberg J, Manning CD. Advances in natural language processing. Science (80−). 2015;349:261–6.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3