A Lightweight Visual Understanding System for Enhanced Assistance to the Visually Impaired Using an Embedded Platform

Author:

Yousif Adel Jalal,Al-Jammas Mohammed H.

Abstract

Visually impaired individuals often face significant challenges in navigating their environments due to limited access to visual information. To address this issue, a portable, cost-effective assistive tool is proposed to operate on a low-power embedded system such as the Jetson Nano. The novelty of this research lies in developing an efficient, lightweight video captioning model within constrained resources to ensure its compatibility with embedded platforms. This research aims to enhance the autonomy and accessibility of visually impaired people by providing audio descriptions of their surroundings through the processing of live-streaming videos. The proposed system utilizes two distinct lightweight deep learning modules: an object detection module based on the state-of-the-art YOLOv7 model, and a video captioning module that utilizes both the Video Swin Transformer and 2D-CNN for feature extraction, along with the Transformer network for caption generation. The goal of the object detection module is for providing real-time multiple object identification in the surrounding environment of the blind while the video captioning module is to provide detailed descriptions of the entire visual scenes and activities including objects, actions, and relationships between them. The user interacts via a headphone with the proposed system using a specific audio command to trigger the corresponding module even object detection or video captioning and receiving an audio description output for the visual contents. The system demonstrates satisfactory results, achieving inference speeds between 0.11 to 1.1 seconds for object detection and 0.91 to 1.85 seconds for video captioning, evaluated through both quantitative metrics and subjective assessments.

Publisher

University of Diyala, College of Science

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3