Hemorrhage semantic segmentation in fundus images for the diagnosis of diabetic retinopathy by using a convolutional neural network

Author:

Skouta Ayoub,Elmoufidi Abdelali,Jai-Andaloussi Said,Ouchetto Ouail

Abstract

AbstractBecause retinal hemorrhage is one of the earliest symptoms of diabetic retinopathy, its accurate identification is essential for early diagnosis. One of the major obstacles ophthalmologists face in making a quick and effective diagnosis is viewing too many images to manually identify lesions of different shapes and sizes. To this end, researchers are working to develop an automated method for screening for diabetic retinopathy. This paper presents a modified CNN UNet architecture for identifying retinal hemorrhages in fundus images. Using the graphics processing unit (GPU) and the IDRiD dataset, the proposed UNet was trained to segment and detect potential areas that may harbor retinal hemorrhages. The experiment was also tested using the IDRiD and DIARETDB1 datasets, both freely available on the Internet. We applied preprocessing to improve the image quality and increase the data, which play an important role in defining the complex features involved in the segmentation task. A significant improvement was then observed in the learning neural network that was able to effectively segment the bleeding and achieve sensitivity, specificity and accuracy of 80.49%, 99.68%, and 98.68%, respectively. The experimental results also yielded an IoU of 76.61% and a Dice value of 86.51%, showing that the predictions obtained by the network are effective and can significantly reduce the efforts of ophthalmologists. The results revealed a significant increase in the diagnostic performance of one of the most important retinal disorders caused by diabetes.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Reference54 articles.

1. Nagaraj P, Deepalakshmi P, Romany FM. Artificial flora algorithm-based feature selection with gradient boosted tree model for diabetes classification. Diabetes Metab Syndrome Obes Targets Ther. 2021;14:2789.

2. Zhang Y-H, Guo W, Zeng T, Zhang S, Chen L, Gamarra M, Mansour RF, Escorcia-Gutierrez J, Huang T, Cai Y-D. Identification of microbiota biomarkers with orthologous gene annotation for type 2 diabetes. Front Microbiol. 2021;12:1927.

3. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012;25:1097–105.

4. Elmoufidi A, Skouta A, Jai-Andaloussi S, Ouchetto O. CNN with multiple inputs for automatic glaucoma assessment using fundus images. Int J Image Graph. 2022. https://doi.org/10.1142/S0219467823500122.

5. Pournaras CJ. Pathologies vasculaires oculaires. Issy-les-Moulineaux: Elsevier Masson; 2008.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3