Author:
Rathinam Vinoth,R Sasireka,Valarmathi K.
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Özbay E. An active deep learning method for diabetic retinopathy detection in segmented fundus images using artificial bee colony algorithm. Artif Intell Rev. 2023;56(4):3291–318.
2. Wang X, Fang Y, Yang S, Zhu D, Wang M, Zhang J, Zhang J, Cheng J, Tong KY, Han X. CLC-Net: contextual and local collaborative network for lesion segmentation in diabetic retinopathy images. Neurocomputing. 2023;527:100–9.
3. Toğaçar M. Detection of retinopathy disease using morphological gradient and segmentation approaches in fundus images. Comput Methods Programs Biomed. 2022;214:106579.
4. Chen Y, Xu S, Long J, Xie Y. DR-Net: diabetic retinopathy detection with fusion multi-lesion segmentation and classification. Multimedia Tools App. 2023;82(17):26919–35.
5. Gargi M, Namburu A. An optimized intelligent boosting model for diabetic retinopathy segmentation severity analysis using fundus images. Eng Appl Sci Res. 2023;50(2):163–75.