CNN with Multiple Inputs for Automatic Glaucoma Assessment Using Fundus Images

Author:

Elmoufidi Abdelali1,Skouta Ayoub2,Jai-Andaloussi Said2,Ouchetto Ouail2

Affiliation:

1. Data4Earth Laboratory, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco

2. Computer and Systems Laboratory, Hassan II University, Casablanca 20100, Morocco

Abstract

In the area of ophthalmology, glaucoma affects an increasing number of people. It is a major cause of blindness. Early detection avoids severe ocular complications such as glaucoma, cystoid macular edema, or diabetic proliferative retinopathy. Intelligent artificial intelligence has been confirmed beneficial for glaucoma assessment. In this paper, we describe an approach to automate glaucoma diagnosis using funds images. The setup of the proposed framework is in order: The Bi-dimensional Empirical Mode Decomposition (BEMD) algorithm is applied to decompose the Regions of Interest (ROI) to components (BIMFs+residue). CNN architecture VGG19 is implemented to extract features from decomposed BEMD components. Then, we fuse the features of the same ROI in a bag of features. These last very long; therefore, Principal Component Analysis (PCA) are used to reduce features dimensions. The bags of features obtained are the input parameters of the implemented classifier based on the Support Vector Machine (SVM). To train the built models, we have used two public datasets, which are ACRIMA and REFUGE. For testing our models, we have used a part of ACRIMA and REFUGE plus four other public datasets, which are RIM-ONE, ORIGA-light, Drishti-GS1, and sjchoi86-HRF. The overall precision of 98.31%, 98.61%, 96.43%, 96.67%, 95.24%, and 98.60% is obtained on ACRIMA, REFUGE, RIM-ONE, ORIGA-light, Drishti-GS1, and sjchoi86-HRF datasets, respectively, by using the model trained on REFUGE. Again an accuracy of 98.92%, 99.06%, 98.27%, 97.10%, 96.97%, and 96.36% is obtained in the ACRIMA, REFUGE, RIM-ONE, ORIGA-light, Drishti-GS1, and sjchoi86-HRF datasets, respectively, using the model training on ACRIMA. The experimental results obtained from different datasets demonstrate the efficiency and robustness of the proposed approach. A comparison with some recent previous work in the literature has shown a significant advancement in our proposal.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3