Abstract
Abstract
Background
Stevia rebaudiana (Bertoni) is considered one of the most valuable plants because of the steviol glycosides (SGs) that can be extracted from its leaves. Glycosyltransferases (GTs), which can transfer sugar moieties from activated sugar donors onto saccharide and nonsaccharide acceptors, are widely distributed in the genome of S. rebaudiana and play important roles in the synthesis of steviol glycosides.
Results
Six stevia genotypes with significantly different concentrations of SGs were obtained by induction through various mutagenic methods, and the contents of seven glycosides (stevioboside, Reb B, ST, Reb A, Reb F, Reb D and Reb M) in their leaves were considerably different. Then, NGS and single-molecule real-time (SMRT) sequencing were combined to analyse leaf tissue from these six different genotypes to generate a full-length transcriptome of S. rebaudiana. Two phylogenetic trees of glycosyltransferases (SrUGTs) were constructed by the neighbour-joining method and successfully predicted the functions of SrUGTs involved in SG biosynthesis. With further insight into glycosyltransferases (SrUGTs) involved in SG biosynthesis, the weighted gene co-expression network analysis (WGCNA) method was used to characterize the relationships between SrUGTs and SGs, and forty-four potential SrUGTs were finally obtained, including SrUGT85C2, SrUGT74G1, SrUGT76G1 and SrUGT91D2, which have already been reported to be involved in the glucosylation of steviol glycosides, illustrating the reliability of our results.
Conclusion
Combined with the results obtained by previous studies and those of this work, we systematically characterized glycosyltransferases in S. rebaudiana and forty-four candidate SrUGTs involved in the glycosylation of steviol glucosides were obtained. Moreover, the full-length transcriptome obtained in this study will provide valuable support for further research investigating S. rebaudiana.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference41 articles.
1. Economic and medicinal plant research;AD Kinghorn,1985
2. Kasai R, Kaneda N, Tanaka O, Yamasaki K, Sakamoto I, Morimoto K, Okada S, Kitahata S, Furukawa H. Sweet diterpene-glycosides of leaves of S. rebaudiana Bertoni. Synthesis and structure-sweetness relationship of rebaudiosides-a, D, E and their related glycosides [J]. Nippon Kagakukaishi. 1981;5:726–35.
3. Stephen ES, Jing R, Ong SS, Wong YY, et al. Insights from the sequencing and annotation of the Stevia rebaudian genome and their application in agronomy and health [C]//international congress of nutrition “from science to nutrition security”. 2017.
4. Ceunen S, Geuns JM. Steviol glycosides: chemical diversity, metabolism, and function [J]. J Nat Prod. 2013;76:1201–28.
5. Espinoza MI, Vincken JP, Sanders M, Castro C, Stieger M, Agosin E. Identification, Quantification, and Sensory Characterization of Steviol Glycosides from Differently Processed S. rebaudiana Commercial Extracts. J Agric Food Chem. 2014;62:11797–804.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献