Genome-Wide Identification and Expression Analysis of bZIP Family Genes in Stevia rebaudiana

Author:

Wu Mengyang1,Chen Jinsong1,Tang Weilin1,Jiang Yijie1ORCID,Hu Zhaoyong1,Xu Dongbei1,Hou Kai1ORCID,Chen Yinyin1,Wu Wei1ORCID

Affiliation:

1. Agronomy College, Sichuan Agricultural University, Chengdu 611130, China

Abstract

The basic (region) leucine zippers (bZIPs) are evolutionarily conserved transcription factors widely distributed in eukaryotic organisms. In plants, they are not only involved in growth and development, defense and stress responses and regulation of physiological processes but also play a pivotal role in regulating secondary metabolism. To explore the function related to the bZIP gene family in Stevia rebaudiana Bertoni, we identified 105 SrbZIP genes at the genome-wide level and classified them into 12 subfamilies using bioinformation methods. Three main classes of cis-acting elements were found in the SrbZIP promoter regions, including development-related elements, defense and stress-responsive elements and phytohormone-responsive elements. Through protein–protein interaction network of 105 SrbZIP proteins, SrbZIP proteins were mainly classified into four major categories: ABF2/ABF4/ABI5 (SrbZIP51/SrbZIP38/SrbZIP7), involved in phytohormone signaling, GBF1/GBF3/GBF4 (SrbZIP29/SrbZIP63/SrbZIP60) involved in environmental signaling, AREB3 (SrbZIP88), PAN (SrbZIP12), TGA1 (SrbZIP69), TGA4 (SrbZIP82), TGA7 (SrbZIP31), TGA9 (SrbZIP95), TGA10 (SrbZIP79) and HY5 (SrbZIP96) involved in cryptochrome signaling, and FD (SrbZIP72) promoted flowering. The transcriptomic data showed that SrbZIP genes were differentially expressed in six S. rebaudiana cultivars (‘023’, ‘110’, ‘B1188’, ‘11-14’, ‘GP’ and ‘GX’). Moreover, the expression levels of selected 15 SrbZIP genes in response to light, abiotic stress (low temperature, salt and drought), phytohormones (methyl jasmonate, gibberellic acid and salicylic acid) treatment and in different tissues were analyzed utilizing qRT-PCR. Some SrbZIP genes were further identified to be highly induced by factors affecting glycoside synthesis. Among them, three SrbZIP genes (SrbZIP54, SrbZIP63 and SrbZIP32) were predicted to be related to stress-responsive terpenoid synthesis in S. rebaudiana. The protein–protein interaction network expanded the potential functions of SrbZIP genes. This study firstly provided the comprehensive genome-wide report of the SrbZIP gene family, laying a foundation for further research on the evolution, function and regulatory role of the bZIP gene family in terpenoid synthesis in S. rebaudiana.

Funder

National Natural Science Foundation of China

Foundation on Double-Support Plan of Disciplinary Construction in Sichuan Agricultural University-Innovation Team Projects

Foundation on Sichuan Key Discipline Construction Project of Traditional Chinese Medicine

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3