Systematic analysis of the Capsicum ERF transcription factor family: identification of regulatory factors involved in the regulation of species-specific metabolites

Author:

Song Jiali,Chen Changming,Zhang Shuanglin,Wang Juntao,Huang Zhubing,Chen Muxi,Cao Bihao,Zhu Zhangsheng,Lei Jianjun

Abstract

Abstract Background ERF transcription factors (TFs) belong to the Apetala2/Ethylene responsive Factor (AP2/ERF) TF family and play a vital role in plant growth and development processes. Capsorubin and capsaicinoids have relatively high economic and nutritional value, and they are specifically found in Capsicum. However, there is little understanding of how ERFs participate in the regulatory networks of capsorubin and capsaicinoids biosynthesis. Results In this study, a total of 142 ERFs were identified in the Capsicum annuum genome. Subsequent phylogenetic analysis allowed us to divide ERFs into DREB (dehydration responsive element binding proteins) and ERF subfamilies, and further classify them into 11 groups with several subgroups. Expression analysis of biosynthetic pathway genes and CaERFs facilitated the identification of candidate genes related to the regulation of capsorubin and capsaicinoids biosynthesis; the candidates were focused in cluster C9 and cluster C10, as well as cluster L3 and cluster L4, respectively. The expression patterns of CaERF82, CaERF97, CaERF66, CaERF107 and CaERF101, which were found in cluster C9 and cluster C10, were consistent with those of accumulating of carotenoids (β-carotene, zeaxanthin and capsorubin) in the pericarp. In cluster L3 and cluster L4, the expression patterns of CaERF102, CaERF53, CaERF111 and CaERF92 were similar to those of the accumulating capsaicinoids. Furthermore, CaERF92, CaERF102 and CaERF111 were found to be potentially involved in temperature-mediated capsaicinoids biosynthesis. Conclusion This study will provide an extremely useful foundation for the study of candidate ERFs in the regulation of carotenoids and capsaicinoids biosynthesis in peppers.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3