DCSE:Double-Channel-Siamese-Ensemble model for protein protein interaction prediction

Author:

Chen Wenqi,Wang Shuang,Song Tao,Li Xue,Han Peifu,Gao Changnan

Abstract

Abstract Background Protein-protein interaction (PPI) is very important for many biochemical processes. Therefore, accurate prediction of PPI can help us better understand the role of proteins in biochemical processes. Although there are many methods to predict PPI in biology, they are time-consuming and lack accuracy, so it is necessary to build an efficiently and accurately computational model in the field of PPI prediction. Results We present a novel sequence-based computational approach called DCSE (Double-Channel-Siamese-Ensemble) to predict potential PPI. In the encoding layer, we treat each amino acid as a word, and map it into an N-dimensional vector. In the feature extraction layer, we extract features from local and global perspectives by Multilayer Convolutional Neural Network (MCN) and Multilayer Bidirectional Gated Recurrent Unit with Convolutional Neural Networks (MBC). Finally, the output of the feature extraction layer is then fed into the prediction layer to output whether the input protein pair will interact each other. The MCN and MBC are siamese and ensemble based network, which can effectively improve the performance of the model. In order to demonstrate our model’s performance, we compare it with four machine learning based and three deep learning based models. The results show that our method outperforms other models in all evaluation criteria. The Accuracy, Precision, $$F_{1}$$ F 1 , Recall and MCC of our model are 0.9303, 0.9091, 0.9268, 0.9452, 0.8609. For the other seven models, the highest Accuracy, Precision, $$F_{1}$$ F 1 , Recall and MCC are 0.9288, 0.9243, 0.9246, 0.9250, 0.8572. We also test our model in the imbalanced dataset and transfer our model to another species. The results show our model is excellent. Conclusion Our model achieves the best performance by comparing it with seven other models. NLP-based coding method has a good effect on PPI prediction task. MCN and MBC extract protein sequence features from local and global perspectives and these two feature extraction layers are based on siamese and ensemble network structures. Siamese-based network structure can keep the features consistent and ensemble based network structure can effectively improve the accuracy of the model.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3