DELPHI: accurate deep ensemble model for protein interaction sites prediction

Author:

Li Yiwei1,Golding G Brian2,Ilie Lucian1

Affiliation:

1. Department of Computer Science, The University of Western Ontario London, ON N6A 5B7, Canada

2. Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada

Abstract

Abstract Motivation Proteins usually perform their functions by interacting with other proteins, which is why accurately predicting protein–protein interaction (PPI) binding sites is a fundamental problem. Experimental methods are slow and expensive. Therefore, great efforts are being made towards increasing the performance of computational methods. Results We propose DEep Learning Prediction of Highly probable protein Interaction sites (DELPHI), a new sequence-based deep learning suite for PPI-binding sites prediction. DELPHI has an ensemble structure which combines a CNN and a RNN component with fine tuning technique. Three novel features, HSP, position information and ProtVec are used in addition to nine existing ones. We comprehensively compare DELPHI to nine state-of-the-art programmes on five datasets, and DELPHI outperforms the competing methods in all metrics even though its training dataset shares the least similarities with the testing datasets. In the most important metrics, AUPRC and MCC, it surpasses the second best programmes by as much as 18.5% and 27.7%, respectively. We also demonstrated that the improvement is essentially due to using the ensemble model and, especially, the three new features. Using DELPHI it is shown that there is a strong correlation with protein-binding residues (PBRs) and sites with strong evolutionary conservation. In addition, DELPHI’s predicted PBR sites closely match known data from Pfam. DELPHI is available as open-sourced standalone software and web server. Availability and implementation The DELPHI web server can be found at delphi.csd.uwo.ca/, with all datasets and results in this study. The trained models, the DELPHI standalone source code, and the feature computation pipeline are freely available at github.com/lucian-ilie/DELPHI. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

NSERC Discovery

Research Tools and Instruments Grant

NSERC Discovery Grant

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference63 articles.

1. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning;Alipanahi;Nat. Biotechnol,2015

2. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs;Altschul;Nucleic Acids Res,1997

3. Binding site prediction for protein-protein interactions and novel motif discovery using re-occurring polypeptide sequences;Amos-Binks;BMC Bioinformatics,2011

4. Predictions of protein-protein interfaces within membrane protein complexes;Asadabadi;Avicenna J. Med. Biotechnol,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3