Deep Learning Methods for Binding Site Prediction in Protein Structures
-
Published:2024-06
Issue:2
Volume:18
Page:103-117
-
ISSN:1990-7508
-
Container-title:Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry
-
language:en
-
Short-container-title:Biochem. Moscow Suppl. Ser. B
Publisher
Pleiades Publishing Ltd
Reference126 articles.
1. Jimenez, J., Doerr, S., Martinez-Rosell, G., Rose, A.S., and De Fabritiis, G., Deepsite: Protein-binding site predictor using 3d-convolutional neural networks, Bioinformatics, 2017, vol. 33, no. 19, pp. 3036–3042. 2. Simonyan, K. and Zisserman, A., Very deep convolutional networks for largescale image recognition, ar-Xiv:1409.1556, 2014. 3. Deganutti, G., Prischi, F., and Reynolds, C.A., Supervised molecular dynamics for exploring the druggability of the SARS-CoV-2 spike protein, J. Comput.-Aided Mol. Des., 2021, vol. 35, pp. 195–207. 4. Lecca, D., Hsueh, S.-C., Luo, W., Tweedie, D., Kim, D.S., Baig, A.M., Vargesson, N., Kim, Y.K., Hwang, I., Kim, S., et al., Novel, thalidomide-like, non-cereblon binding drug tetrafluorobornylphthalimide mitigates inflammation and brain injury, J. Biomed. Sci., 2023, vol. 30, no. 1, p. 16. 5. Tang, L., Qiu, W., Zhang, S., Wang, J., Yang, X., Xu, B., Magnuson, J.T., Xu, E.G., Wu, M., and Zheng, C., Poly- and perfluoroalkyl substances induce immunotoxicity via the TLR pathway in zebrafish: Links to carbon chain length, Environ. Sci. Technol., 2023, vol. 57, no. 15, pp. 6139–6149.
|
|