Unraveling transcriptomics of sorghum grain carotenoids: a step forward for biofortification

Author:

Cruet-Burgos Clara,Rhodes Davina H.

Abstract

Abstract Background Sorghum (Sorghum bicolor [L.] Moench) is a promising target for pro-vitamin A biofortification as it is a global staple crop, particularly in regions where vitamin A deficiency is prevalent. As with most cereal grains, carotenoid concentrations are low in sorghum, and breeding could be a feasible strategy to increase pro-vitamin A carotenoids to biologically relevant concentrations. However, there are knowledge gaps in the biosynthesis and regulation of sorghum grain carotenoids, which can limit breeding effectiveness. The aim of this research was to gain an understanding of the transcriptional regulation of a priori candidate genes in carotenoid precursor, biosynthesis, and degradation pathways. Results We used RNA sequencing of grain to compare the transcriptional profile of four sorghum accessions with contrasting carotenoid profiles through grain development. Most a priori candidate genes involved in the precursor MEP, carotenoid biosynthesis, and carotenoid degradation pathways were found to be differentially expressed between sorghum grain developmental stages. There was also differential expression of some of the a priori candidate genes between high and low carotenoid content groups at each developmental time point. Among these, we propose geranyl geranyl pyrophosphate synthase (GGPPS), phytoene synthase (PSY), and phytoene desaturase (PDS) as promising targets for pro-vitamin A carotenoid biofortification efforts in sorghum grain. Conclusions A deeper understanding of the controls underlying biosynthesis and degradation of sorghum grain carotenoids is needed to advance biofortification efforts. This study provides the first insights into the regulation of sorghum grain carotenoid biosynthesis and degradation, suggesting potential gene targets to prioritize for molecular breeding.

Funder

Foundation for Food & Agriculture Research

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3