Comprehensive analysis of pre-mRNA alternative splicing regulated by m6A methylation in pig oxidative and glycolytic skeletal muscles

Author:

Tan Baohua,Zeng Jiekang,Meng Fanming,Wang Shanshan,Xiao Liyao,Zhao Xinming,Hong Linjun,Zheng Enqin,Wu Zhenfang,Li Zicong,Gu Ting

Abstract

Abstract Background Different types of skeletal myofibers exhibit distinct physiological and metabolic properties that are associated with meat quality traits in livestock. Alternative splicing (AS) of pre-mRNA can generate multiple transcripts from an individual gene by differential selection of splice sites. N6-methyladenosine (m6A) is the most abundant modification in mRNAs, but its regulation for AS in different muscles remains unknown.  Results We characterized AS events and m6A methylation pattern in pig oxidative and glycolytic muscles. A tota1 of 1294 differential AS events were identified, and differentially spliced genes were significantly enriched in processes related to different phenotypes between oxidative and glycolytic muscles. We constructed the regulatory network between splicing factors and corresponding differential AS events and identified NOVA1 and KHDRBS2 as key splicing factors. AS event was enriched in m6A-modified genes, and the methylation level was positively correlated with the number of AS events in genes. The dynamic change in m6A enrichment was associated with 115 differentially skipping exon (SE-DAS) events within 92 genes involving in various processes, including muscle contraction and myofibril assembly. We obtained 23.4% SE-DAS events (27/115) regulated by METTL3-meditaed m6A and experimentally validated the aberrant splicing of ZNF280D, PHE4DIP, and NEB. The inhibition of m6A methyltransferase METTL3 could induce the conversion of oxidative fiber to glycolytic fiber in PSCs. Conclusion Our study suggested that m6A modification could contribute to significant difference in phenotypes between oxidative and glycolytic muscles by mediating the regulation of AS. These findings would provide novel insights into mechanisms underlying muscle fiber conversion.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3