Abstract
Abstract
Background
Sporobolomyces pararoseus is regarded as an oleaginous red yeast, which synthesizes numerous valuable compounds with wide industrial usages. This species hold biotechnological interests in biodiesel, food and cosmetics industries. Moreover, the ballistospores-shooting promotes the colonizing of S. pararoseus in most terrestrial and marine ecosystems. However, very little is known about the basic genomic features of S. pararoseus. To assess the biotechnological potential and ballistospores-shooting mechanism of S. pararoseus on genome-scale, the whole genome sequencing was performed by next-generation sequencing technology.
Results
Here, we used Illumina Hiseq platform to firstly assemble S. pararoseus genome into 20.9 Mb containing 54 scaffolds and 5963 predicted genes with a N50 length of 2,038,020 bp and GC content of 47.59%. Genome completeness (BUSCO alignment: 95.4%) and RNA-seq analysis (expressed genes: 98.68%) indicated the high-quality features of the current genome. Through the annotation information of the genome, we screened many key genes involved in carotenoids, lipids, carbohydrate metabolism and signal transduction pathways. A phylogenetic assessment suggested that the evolutionary trajectory of the order Sporidiobolales species was evolved from genus Sporobolomyces to Rhodotorula through the mediator Rhodosporidiobolus. Compared to the lacking ballistospores Rhodotorula toruloides and Saccharomyces cerevisiae, we found genes enriched for spore germination and sugar metabolism. These genes might be responsible for the ballistospores-shooting in S. pararoseus NGR.
Conclusion
These results greatly advance our understanding of S. pararoseus NGR in biotechnological potential and ballistospores-shooting, which help further research of genetic manipulation, metabolic engineering as well as its evolutionary direction.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Natural Science Foundation Guidance Project of Liaoning Province
Publisher
Springer Science and Business Media LLC
Reference71 articles.
1. Kumar S, Kushwaha H, Bachhawat AK, Raghava GPS, Ganesan K. Genome sequence of the oleaginous red yeast Rhodosporidium toruloides MTCC 457. Eukaryot Cell. 2012;11(8):1083–4.
2. Paul D, Magbanua Z, MA II, French T, Bridges SM, Burgess SC, et al. Genome sequence of the oleaginous yeast Rhodotorula glutinis ATCC 204091. Genome Announc. 2014;2(1):e00046–14.
3. Lin X, Wang Y, Zhang S, Zhu Z, Zhou YJ, Yang F, et al. Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Res. 2014;14(4):547–55.
4. Sambles C, Middelhaufe S, Soanes D, Kolak D, Lux T, Moore K, et al. Genome sequence of the oleaginous yeast Rhodotorula toruloides strain CGMCC 2.1609. Genom Data. 2017;13:1–2.
5. Urbina H, Aime MC. A closer look at Sporidiobolales: ubiquitous microbial community members of plant and food biospheres. Mycologia. 2018;110(1):79–92.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献