Abstract
AbstractBackgroundTaurine is a conditional essential amino acid for fish. A study was conducted to investigate the compensating effect of supplemental taurine in diets for red seabream (Pagrus major) on impaired growth performance by fish meal (FM) replacement with soybean meal (SM) at low water temperature (14.15 ± 1.95 °C).MethodsA FM-based diet was considered as a high FM diet and three other experimental diets were formulated to replace FM with SM by 20, 35, or 50% (HFM, SM20, SM35, or SM50, respectively) without taurine and other four diets were formulated by adding 1% taurine to the diets (HFM-T, SM20-T, SM35-T, or SM50-T, respectively). Triplicate groups of fish (108.9 ± 1.58 g/fish) were distributed into 24 polyvinyl circular tanks (215 L) with 20 fish per tank and fed one of the diets to satiation for 20 weeks.ResultsGrowth performance and feed utilization of red seabream were significantly improved by the dietary taurine supplementation. SM20-T and SM35-T diets increased fish growth that are comparable to HFM diet. Feed intake, feed conversion ratio, and protein efficiency ratio of fish fed SM20-T and SM35-T diets were not significantly different from those of HFM group. Dietary taurine supplementation in each FM replaced group numerically increased innate immunity of the fish. Lysozyme and superoxide dismutase activities were significantly decreased in fish fed SM35, SM50, and SM50-T diets compared to those of fish fed HFM diet while they were not significantly lower in SM20, SM20-T, SM35, and SM35-T groups. Glutathione peroxidase activity was significantly lower in fish group fed SM50 diet while SM50-T group did not significantly lower compared to that of HFM group. The relative expression level of hepatic IGF-1 mRNA was improved in fish fed taurine-supplemented diets compared to their respective SM diets.ConclusionsGrowth performance and feed utilization of red seabream can be accelerated or restored by 1% taurine supplementation when they are fed high level of SM up to 35% in diets during low water temperature season.
Publisher
The Korean Society of Fisheries and Aquatic Science
Subject
Molecular Biology,Aquatic Science,Biochemistry,Oceanography
Reference82 articles.
1. Anderson DP, Siwicki AK. Basic hematology and serology for fish health programs. In: Diseases in Asian Aquaculture II (ed. by M. Shariff, J.R. Arthur & R.P. Subasinghe), Fish Health Section, Asian Fisheries Society, Manila: Leetown Science Center; 1995. p. 185–202.
2. Antonopoulou E, Chouri E, Feidantsis K, Lazou A, Chatzifotis S. Effects of partial dietary supplementation of fish meal with soymeal on the stress and apoptosis response in the digestive system of common dentex (Dentex dentex). J Biol Res. 2017;24:14. https://doi.org/10.1186/s40709-017-0071-1 .
3. AOAC. Official methods of analysis. 16th edition. Arlington: Association of Official Analytical Chemists; 1995.
4. Bakke-McKellep AM, Press CM, Baeverfjord G, Krogdahl A, Landsverk T. Changes in immune and enzyme histochemical phenotypes of cells in the intestinal mucosa of Atlantic salmon, Salmo salar L., with soybean meal-induced enteritis. J Fish Dis. 2000;23:115–27. https://doi.org/10.1046/j.1365-2761.2000.00218.x .
5. Beckman BR. Perspectives on concordant and discordant relations between insulin-like growth factor 1 (IGF1) and growth in fishes. Gen Comp Endocrinol. 2011;170:233–52. https://doi.org/10.1016/J.YGCEN.2010.08.009 .
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献