Risk of pedicle and spinous process violation during cortical bone trajectory screw placement in the lumbar spine

Author:

Zhang Lilian,Tian Naifeng,Yang Jian,Ni Wenfei,Jin Liya

Abstract

Abstract Background Previous studies have confirmed the feasibility of the cortical bone trajectory (CBT) technique. However, there are few reports on spinous process violation and screw penetration during the screw insertion. The purpose of this study was to evaluate the incidence of spinous process violation and screw penetration through the pedicle during CBT screw insertion. Methods Computed tomography (CT) scans with normal lumbar structures were consecutively obtained and three-dimensional (3D) reconstructions of the lumbar spine were created. Bilateral CBT screw placement was simulated on each segment using a screw diameter of 4.5 mm, 5.0 mm, or 5.5 mm. Incidences of these complications were recorded and analyzed. Results A total of 90 patients were enrolled. Spinous process violation was observed in 68.3, 53.3, 25.5, 1.7, and 0% from L1 to L5, respectively, using 4.5 mm screws. A significant difference was found among the five segments but this was unconnected to gender or screw diameter. The incidence of screw penetration through the inner wall decreased from L1 to L4; in turn, L1 (16.7–35.5%), L2 (12.7–34.4%), L3 (2.8–23.8%) and L4 (1.1–6.7%). This trend was reversed in L5 (6.7–16.7%). Moreover, screw penetration through the outer wall was rare. The incidence of screw penetration varied with screw size as well as lumbar level, but not with gender. Conclusions There are more difficulties of CBT screw fixation in upper lumbar spine. The low rate of screw penetration, using 4.5 mm screws, suggests the safety for CBT fixation in the lumbar spine. Larger screws (5.0 mm or 5.5 mm) are more recommended for use in the lower lumbar spine. Moreover, CBT fixation in L5 deserves greater attention because of the unique morphology of the pedicle.

Funder

Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3