Biomechanical evaluation of the fixation strength of lumbar pedicle screws using cortical bone trajectory: a finite element study

Author:

Matsukawa Keitaro1,Yato Yoshiyuki2,Imabayashi Hideaki1,Hosogane Naobumi1,Asazuma Takashi2,Nemoto Koichi1

Affiliation:

1. Department of Orthopaedic Surgery, National Defense Medical College, Tokorozawa, Saitama; and

2. Department of Orthopaedic Surgery, National Hospital Organization, Murayama Medical Center, Musashimurayama, Tokyo, Japan

Abstract

OBJECT Cortical bone trajectory (CBT) maximizes thread contact with the cortical bone surface and provides increased fixation strength. Even though the superior stability of axial screw fixation has been demonstrated, little is known about the biomechanical stiffness against multidirectional loading or its characteristics within a unit construct. The purpose of the present study was to quantitatively evaluate the anchorage performance of CBT by the finite element (FE) method. METHODS Thirty FE models of L-4 vertebrae from human spines (mean age [± SD] 60.9 ± 18.7 years, 14 men and 16 women) were computationally created and pedicle screws were placed using the traditional trajectory (TT) and CBT. The TT screw was 6.5 mm in diameter and 40 mm in length, and the CBT screw was 5.5 mm in diameter and 35 mm in length. To make a valid comparison, the same shape of screw was inserted into the same pedicle in each subject. First, the fixation strength of a single pedicle screw was compared by axial pullout and multidirectional loading tests. Next, vertebral fixation strength within a construct was examined by simulating the motions of flexion, extension, lateral bending, and axial rotation. RESULTS CBT demonstrated a 26.4% greater mean pullout strength (POS; p = 0.003) than TT, and also showed a mean 27.8% stronger stiffness (p < 0.05) during cephalocaudal loading and 140.2% stronger stiffness (p < 0.001) during mediolateral loading. The CBT construct had superior resistance to flexion and extension loading and inferior resistance to lateral bending and axial rotation. The vertebral fixation strength of the construct was significantly correlated with bone mineral density of the femoral neck and the POS of a single screw. CONCLUSIONS CBT demonstrated superior fixation strength for each individual screw and sufficient stiffness in flexion and extension within a construct. The TT construct was superior to the CBT construct during lateral bending and axial rotation.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3